Nonlinear modes of the nonlinear Schrödinger equation with complex periodic potential

G.L.Alfimov^{1,3}, P.P.Kizin¹, V.V.Konotop², D.A.Zezyulin²

¹ National Research University of Electronic Technology "MIET", Moscow, 124498, Russia ² Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de

Lisboa, Instituto para Investigação Interdisciplinar, Avenida Professor Gama Pinto 2,

Lisboa 1649-003, Portugal ³ email: galfimov@yahoo.com

Abstract:

In the talk, we address the problem of description of nonlinear states for the nonlinear Schrödinger (NLS) equation with a complex periodic potential W(x) = U(x) + iV(x)and repulsive (defocusing) nonlinearity.

$$i\Psi_t = -\Psi_{xx} + W(x)\Psi + |\Psi|^2\Psi.$$
(1)

Nonlinear states for Eq.(1) are of the form $\Psi(x,t) = \rho(x) \exp\{-i(\omega t + \phi(x))\}$. We study the dynamics of Poincaré map T generated by the system of ODE in 3D space $(\rho, \rho_x, \theta), \theta = \phi_x$, for fixed value of the frequency ω . An important peculiarity of the system is that for a wide class of the potentials W(x) the "most part" of its solutions collapse (i.e. tend to infinity at some finite value $x_0 \in \mathbf{R}$). Thus, the dynamics generated by the map T can be described in terms of T-iterations of specific sets \mathcal{U}_{π}^+ and \mathcal{U}_{π}^{-} . These sets consist of the points from (ρ, ρ_x, θ) which have T-image (the set \mathcal{U}_{π}^+) or T-pre-image (the set \mathcal{U}_{π}^-) and must be found numerically. The main attention is focused on the cases when W(x) is real potential, \mathcal{PT} -symmetric potential, and more general case, including "nearly- \mathcal{PT} "- symmetric potentials.